Some results concerning cryptographically significant mappings over GF(2n)

نویسندگان

  • Enes Pasalic
  • Pascale Charpin
چکیده

In this paper we investigate the existence of permutation polynomials of the form F(x) = xd + L(x) over GF(2n), L being a linear polynomial. The results we derive have a certain impact on the long-term open problem on the nonexistence of APN permutations over GF(2n), when n is even. It is shown that certain choices of exponent d cannot yield APN permutations for even n. When n is odd, an infinite class of APN permutations may be derived from Gold mapping x3 in a recursive manner, that is starting with a specific APN permutation on GF(2k), k odd, APN permutations are derived over GF(2k+2i ) for any i ≥ 1. But it is demonstrated that these classes of functions are simply affine permutations of the inverse coset of the Gold mapping x3. This essentially excludes the possibility of deriving new EA-inequivalent classes of APN functions by applying the method of Berveglieri et al. (approach proposed at Asiacrypt 2004, see [3]) to arbitrary APN functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On linear complexity of sequences over GF(2n)

In this paper, we consider some aspects related to determining the linear complexity of sequences over GF(2n). In particular, we study the effect of changing the finite field basis on the minimal polynomials, and thus on the linear complexity, of sequences defined overGF(2n) but given in their binary representation. Let a={ai} be a sequence overGF(2n). Then ai can be represented by ai = ∑n−1 j=...

متن کامل

Low space complexity CRT-based bit-parallel GF(2n) polynomial basis multipliers for irreducible trinomials

By selecting the largest possible value of k ∈ (n/2, 2n/3], we further reduce the AND and XOR gate complexities of the CRT-based hybrid parallel GF (2) polynomial basis multipliers for the irreducible trinomial f = u + u + 1 over GF (2): they are always less than those of the current fastest parallel multipliers – quadratic multipliers, i.e., n AND gates and n− 1 XOR gates. Our experimental res...

متن کامل

Symplectic spreads from twisted fields

A ,yml'/eclic 'l'J"wd of PG(2n + l,q) is a spread of the symplectic polar space ~V(2n + l,q) defined by a nonsingular alternating bilinear form on a (2n+2)dimensional vector space over GF(q), i.e., a set of q"+l + 1 pairwise disjoint maximal totally isotropic subspaces. Note that a symplectic spread of PG(3, q) is equivalent, under the Klein correspondence, to an ovoid of the quadric Q( 4, q). ...

متن کامل

On the Construction of the Steiner System S(5, 8, 24)

Let VI = GF(211), regarded as an 11-dimensional vector space over GF(2), and form V = V, @ (71,). Define vi = 01~ + v, (i = O,..., 22). Since f(X) is irreducible over GF(2), {v. ,..., v 1o, v,} is a basis for V, and so for 11 < i < 22, we can write vi = CzEr, v,, for certain sets Xi _C X = (0 ,..., 10, w}. Moreover, the sets X, can very quickly be computed explicitly by calculating the powers o...

متن کامل

A fast addition algorithm for elliptic curve arithmetic in GF(2n) using projective coordinates

A new fast addition algorithm on an elliptic curve over GF(2n) using the projective coordinates with x =X/Z and y = Y/Z2 is proposed.  2000 Elsevier Science B.V. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2010